Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

miRNA control of vegetative phase change in trees.

Identifieur interne : 002C32 ( Main/Exploration ); précédent : 002C31; suivant : 002C33

miRNA control of vegetative phase change in trees.

Auteurs : Jia-Wei Wang [Allemagne] ; Mee Yeon Park ; Ling-Jian Wang ; Yeonjong Koo ; Xiao-Ya Chen ; Detlef Weigel ; R Scott Poethig

Source :

RBID : pubmed:21383862

Descripteurs français

English descriptors

Abstract

After germination, plants enter juvenile vegetative phase and then transition to an adult vegetative phase before producing reproductive structures. The character and timing of the juvenile-to-adult transition vary widely between species. In annual plants, this transition occurs soon after germination and usually involves relatively minor morphological changes, whereas in trees and other perennial woody plants it occurs after months or years and can involve major changes in shoot architecture. Whether this transition is controlled by the same mechanism in annual and perennial plants is unknown. In the annual forb Arabidopsis thaliana and in maize (Zea mays), vegetative phase change is controlled by the sequential activity of microRNAs miR156 and miR172. miR156 is highly abundant in seedlings and decreases during the juvenile-to-adult transition, while miR172 has an opposite expression pattern. We observed similar changes in the expression of these genes in woody species with highly differentiated, well-characterized juvenile and adult phases (Acacia confusa, Acacia colei, Eucalyptus globulus, Hedera helix, Quercus acutissima), as well as in the tree Populus x canadensis, where vegetative phase change is marked by relatively minor changes in leaf morphology and internode length. Overexpression of miR156 in transgenic P. x canadensis reduced the expression of miR156-targeted SPL genes and miR172, and it drastically prolonged the juvenile phase. Our results indicate that miR156 is an evolutionarily conserved regulator of vegetative phase change in both annual herbaceous plants and perennial trees.

DOI: 10.1371/journal.pgen.1002012
PubMed: 21383862
PubMed Central: PMC3044678


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">miRNA control of vegetative phase change in trees.</title>
<author>
<name sortKey="Wang, Jia Wei" sort="Wang, Jia Wei" uniqKey="Wang J" first="Jia-Wei" last="Wang">Jia-Wei Wang</name>
<affiliation wicri:level="3">
<nlm:affiliation>Department of Molecular Biology, Max Planck Institute for Developmental Biology, Tübingen, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Department of Molecular Biology, Max Planck Institute for Developmental Biology, Tübingen</wicri:regionArea>
<placeName>
<region type="land" nuts="1">Bade-Wurtemberg</region>
<region type="district" nuts="2">District de Tübingen</region>
<settlement type="city">Tübingen</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Park, Mee Yeon" sort="Park, Mee Yeon" uniqKey="Park M" first="Mee Yeon" last="Park">Mee Yeon Park</name>
</author>
<author>
<name sortKey="Wang, Ling Jian" sort="Wang, Ling Jian" uniqKey="Wang L" first="Ling-Jian" last="Wang">Ling-Jian Wang</name>
</author>
<author>
<name sortKey="Koo, Yeonjong" sort="Koo, Yeonjong" uniqKey="Koo Y" first="Yeonjong" last="Koo">Yeonjong Koo</name>
</author>
<author>
<name sortKey="Chen, Xiao Ya" sort="Chen, Xiao Ya" uniqKey="Chen X" first="Xiao-Ya" last="Chen">Xiao-Ya Chen</name>
</author>
<author>
<name sortKey="Weigel, Detlef" sort="Weigel, Detlef" uniqKey="Weigel D" first="Detlef" last="Weigel">Detlef Weigel</name>
</author>
<author>
<name sortKey="Poethig, R Scott" sort="Poethig, R Scott" uniqKey="Poethig R" first="R Scott" last="Poethig">R Scott Poethig</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2011">2011</date>
<idno type="RBID">pubmed:21383862</idno>
<idno type="pmid">21383862</idno>
<idno type="doi">10.1371/journal.pgen.1002012</idno>
<idno type="pmc">PMC3044678</idno>
<idno type="wicri:Area/Main/Corpus">002E96</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">002E96</idno>
<idno type="wicri:Area/Main/Curation">002E96</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">002E96</idno>
<idno type="wicri:Area/Main/Exploration">002E96</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">miRNA control of vegetative phase change in trees.</title>
<author>
<name sortKey="Wang, Jia Wei" sort="Wang, Jia Wei" uniqKey="Wang J" first="Jia-Wei" last="Wang">Jia-Wei Wang</name>
<affiliation wicri:level="3">
<nlm:affiliation>Department of Molecular Biology, Max Planck Institute for Developmental Biology, Tübingen, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Department of Molecular Biology, Max Planck Institute for Developmental Biology, Tübingen</wicri:regionArea>
<placeName>
<region type="land" nuts="1">Bade-Wurtemberg</region>
<region type="district" nuts="2">District de Tübingen</region>
<settlement type="city">Tübingen</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Park, Mee Yeon" sort="Park, Mee Yeon" uniqKey="Park M" first="Mee Yeon" last="Park">Mee Yeon Park</name>
</author>
<author>
<name sortKey="Wang, Ling Jian" sort="Wang, Ling Jian" uniqKey="Wang L" first="Ling-Jian" last="Wang">Ling-Jian Wang</name>
</author>
<author>
<name sortKey="Koo, Yeonjong" sort="Koo, Yeonjong" uniqKey="Koo Y" first="Yeonjong" last="Koo">Yeonjong Koo</name>
</author>
<author>
<name sortKey="Chen, Xiao Ya" sort="Chen, Xiao Ya" uniqKey="Chen X" first="Xiao-Ya" last="Chen">Xiao-Ya Chen</name>
</author>
<author>
<name sortKey="Weigel, Detlef" sort="Weigel, Detlef" uniqKey="Weigel D" first="Detlef" last="Weigel">Detlef Weigel</name>
</author>
<author>
<name sortKey="Poethig, R Scott" sort="Poethig, R Scott" uniqKey="Poethig R" first="R Scott" last="Poethig">R Scott Poethig</name>
</author>
</analytic>
<series>
<title level="j">PLoS genetics</title>
<idno type="eISSN">1553-7404</idno>
<imprint>
<date when="2011" type="published">2011</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Evolution, Molecular (MeSH)</term>
<term>Gene Expression Regulation, Plant (MeSH)</term>
<term>MicroRNAs (genetics)</term>
<term>Phenotype (MeSH)</term>
<term>Trees (genetics)</term>
<term>Trees (growth & development)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Arbres (croissance et développement)</term>
<term>Arbres (génétique)</term>
<term>Phénotype (MeSH)</term>
<term>Régulation de l'expression des gènes végétaux (MeSH)</term>
<term>microARN (génétique)</term>
<term>Évolution moléculaire (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>MicroRNAs</term>
</keywords>
<keywords scheme="MESH" qualifier="croissance et développement" xml:lang="fr">
<term>Arbres</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Trees</term>
</keywords>
<keywords scheme="MESH" qualifier="growth & development" xml:lang="en">
<term>Trees</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Arbres</term>
<term>microARN</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Evolution, Molecular</term>
<term>Gene Expression Regulation, Plant</term>
<term>Phenotype</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Phénotype</term>
<term>Régulation de l'expression des gènes végétaux</term>
<term>Évolution moléculaire</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">After germination, plants enter juvenile vegetative phase and then transition to an adult vegetative phase before producing reproductive structures. The character and timing of the juvenile-to-adult transition vary widely between species. In annual plants, this transition occurs soon after germination and usually involves relatively minor morphological changes, whereas in trees and other perennial woody plants it occurs after months or years and can involve major changes in shoot architecture. Whether this transition is controlled by the same mechanism in annual and perennial plants is unknown. In the annual forb Arabidopsis thaliana and in maize (Zea mays), vegetative phase change is controlled by the sequential activity of microRNAs miR156 and miR172. miR156 is highly abundant in seedlings and decreases during the juvenile-to-adult transition, while miR172 has an opposite expression pattern. We observed similar changes in the expression of these genes in woody species with highly differentiated, well-characterized juvenile and adult phases (Acacia confusa, Acacia colei, Eucalyptus globulus, Hedera helix, Quercus acutissima), as well as in the tree Populus x canadensis, where vegetative phase change is marked by relatively minor changes in leaf morphology and internode length. Overexpression of miR156 in transgenic P. x canadensis reduced the expression of miR156-targeted SPL genes and miR172, and it drastically prolonged the juvenile phase. Our results indicate that miR156 is an evolutionarily conserved regulator of vegetative phase change in both annual herbaceous plants and perennial trees.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">21383862</PMID>
<DateCompleted>
<Year>2011</Year>
<Month>06</Month>
<Day>01</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1553-7404</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>7</Volume>
<Issue>2</Issue>
<PubDate>
<Year>2011</Year>
<Month>Feb</Month>
</PubDate>
</JournalIssue>
<Title>PLoS genetics</Title>
<ISOAbbreviation>PLoS Genet</ISOAbbreviation>
</Journal>
<ArticleTitle>miRNA control of vegetative phase change in trees.</ArticleTitle>
<Pagination>
<MedlinePgn>e1002012</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1371/journal.pgen.1002012</ELocationID>
<Abstract>
<AbstractText>After germination, plants enter juvenile vegetative phase and then transition to an adult vegetative phase before producing reproductive structures. The character and timing of the juvenile-to-adult transition vary widely between species. In annual plants, this transition occurs soon after germination and usually involves relatively minor morphological changes, whereas in trees and other perennial woody plants it occurs after months or years and can involve major changes in shoot architecture. Whether this transition is controlled by the same mechanism in annual and perennial plants is unknown. In the annual forb Arabidopsis thaliana and in maize (Zea mays), vegetative phase change is controlled by the sequential activity of microRNAs miR156 and miR172. miR156 is highly abundant in seedlings and decreases during the juvenile-to-adult transition, while miR172 has an opposite expression pattern. We observed similar changes in the expression of these genes in woody species with highly differentiated, well-characterized juvenile and adult phases (Acacia confusa, Acacia colei, Eucalyptus globulus, Hedera helix, Quercus acutissima), as well as in the tree Populus x canadensis, where vegetative phase change is marked by relatively minor changes in leaf morphology and internode length. Overexpression of miR156 in transgenic P. x canadensis reduced the expression of miR156-targeted SPL genes and miR172, and it drastically prolonged the juvenile phase. Our results indicate that miR156 is an evolutionarily conserved regulator of vegetative phase change in both annual herbaceous plants and perennial trees.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Wang</LastName>
<ForeName>Jia-Wei</ForeName>
<Initials>JW</Initials>
<AffiliationInfo>
<Affiliation>Department of Molecular Biology, Max Planck Institute for Developmental Biology, Tübingen, Germany.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Park</LastName>
<ForeName>Mee Yeon</ForeName>
<Initials>MY</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Wang</LastName>
<ForeName>Ling-Jian</ForeName>
<Initials>LJ</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Koo</LastName>
<ForeName>Yeonjong</ForeName>
<Initials>Y</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Chen</LastName>
<ForeName>Xiao-Ya</ForeName>
<Initials>XY</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Weigel</LastName>
<ForeName>Detlef</ForeName>
<Initials>D</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Poethig</LastName>
<ForeName>R Scott</ForeName>
<Initials>RS</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>R01 GM051893</GrantID>
<Acronym>GM</Acronym>
<Agency>NIGMS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R01 GM051893-14</GrantID>
<Acronym>GM</Acronym>
<Agency>NIGMS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R01-GM051893</GrantID>
<Acronym>GM</Acronym>
<Agency>NIGMS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D052061">Research Support, N.I.H., Extramural</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2011</Year>
<Month>02</Month>
<Day>24</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>PLoS Genet</MedlineTA>
<NlmUniqueID>101239074</NlmUniqueID>
<ISSNLinking>1553-7390</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D035683">MicroRNAs</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D019143" MajorTopicYN="N">Evolution, Molecular</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018506" MajorTopicYN="N">Gene Expression Regulation, Plant</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D035683" MajorTopicYN="N">MicroRNAs</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010641" MajorTopicYN="N">Phenotype</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014197" MajorTopicYN="N">Trees</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000254" MajorTopicYN="Y">growth & development</QualifierName>
</MeshHeading>
</MeshHeadingList>
<CoiStatement>The authors have declared that no competing interests exist.</CoiStatement>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2010</Year>
<Month>11</Month>
<Day>03</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2011</Year>
<Month>01</Month>
<Day>07</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2011</Year>
<Month>3</Month>
<Day>9</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2011</Year>
<Month>3</Month>
<Day>9</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2011</Year>
<Month>6</Month>
<Day>2</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">21383862</ArticleId>
<ArticleId IdType="doi">10.1371/journal.pgen.1002012</ArticleId>
<ArticleId IdType="pmc">PMC3044678</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Plant J. 2007 Feb;49(4):683-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17217458</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Development. 2003 Dec;130(24):6001-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14573523</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 1994 Oct;6(10):1343-1355</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12244224</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Development. 2006 Sep;133(18):3539-47</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16914499</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Dev Cell. 2009 Aug;17(2):268-78</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19686687</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Development. 1994 Jul;120(7):1971-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7925002</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2005 Mar 8;102(10):3691-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15738428</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Development. 2011 Jan;138(2):245-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21148189</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Genet. 1995 Jul;11(7):263-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7482775</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Tree Physiol. 2002 Jun;22(8):507-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12045024</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2006 May 19;125(4):655-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16713560</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2005 Jun 28;102(26):9412-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15958531</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2007 Jul 3;104(27):11376-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17595297</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2000 Aug;5(8):349-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10908880</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2003 Nov;15(11):2730-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14555699</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Dev Cell. 2005 Apr;8(4):517-27</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15809034</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2009 Aug 21;138(4):750-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19703400</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2008 May;20(5):1231-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18492871</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 1988 Aug;119(4):959-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17246439</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2006 Sep;142(1):280-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16861571</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Genet. 2007 Apr;39(4):544-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17369828</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2007;8:481</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18166134</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 2002 Jul 1;16(13):1616-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12101121</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2009 Aug 21;138(4):738-49</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19703399</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Development. 1997 Feb;124(3):645-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9043079</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1996 Aug;111(4):1321-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8756507</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2006 Sep 15;313(5793):1596-604</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16973872</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2008 Mar 25;105(12):4951-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18353984</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2008 Jul;13(7):343-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18502167</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2004 Mar 26;303(5666):2022-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12893888</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2003 Jul 18;301(5631):334-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12869752</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 2006 Dec 15;20(24):3407-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17182867</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Tree Physiol. 1995 Jul-Aug;15(7_8):433-438</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14965924</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Heredity (Edinb). 1999 Aug;83 (Pt 2):179-87</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10469206</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Biol. 2009 Jul;7(7):e1000148</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19582143</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1990 Nov 16;250(4983):923-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17746915</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Allemagne</li>
</country>
<region>
<li>Bade-Wurtemberg</li>
<li>District de Tübingen</li>
</region>
<settlement>
<li>Tübingen</li>
</settlement>
</list>
<tree>
<noCountry>
<name sortKey="Chen, Xiao Ya" sort="Chen, Xiao Ya" uniqKey="Chen X" first="Xiao-Ya" last="Chen">Xiao-Ya Chen</name>
<name sortKey="Koo, Yeonjong" sort="Koo, Yeonjong" uniqKey="Koo Y" first="Yeonjong" last="Koo">Yeonjong Koo</name>
<name sortKey="Park, Mee Yeon" sort="Park, Mee Yeon" uniqKey="Park M" first="Mee Yeon" last="Park">Mee Yeon Park</name>
<name sortKey="Poethig, R Scott" sort="Poethig, R Scott" uniqKey="Poethig R" first="R Scott" last="Poethig">R Scott Poethig</name>
<name sortKey="Wang, Ling Jian" sort="Wang, Ling Jian" uniqKey="Wang L" first="Ling-Jian" last="Wang">Ling-Jian Wang</name>
<name sortKey="Weigel, Detlef" sort="Weigel, Detlef" uniqKey="Weigel D" first="Detlef" last="Weigel">Detlef Weigel</name>
</noCountry>
<country name="Allemagne">
<region name="Bade-Wurtemberg">
<name sortKey="Wang, Jia Wei" sort="Wang, Jia Wei" uniqKey="Wang J" first="Jia-Wei" last="Wang">Jia-Wei Wang</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002C32 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 002C32 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:21383862
   |texte=   miRNA control of vegetative phase change in trees.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:21383862" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020